首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11818篇
  免费   2056篇
  国内免费   2583篇
测绘学   853篇
大气科学   5346篇
地球物理   1967篇
地质学   3026篇
海洋学   879篇
天文学   135篇
综合类   676篇
自然地理   3575篇
  2024年   28篇
  2023年   145篇
  2022年   379篇
  2021年   532篇
  2020年   532篇
  2019年   599篇
  2018年   499篇
  2017年   656篇
  2016年   609篇
  2015年   660篇
  2014年   832篇
  2013年   1181篇
  2012年   781篇
  2011年   829篇
  2010年   691篇
  2009年   823篇
  2008年   822篇
  2007年   865篇
  2006年   763篇
  2005年   696篇
  2004年   539篇
  2003年   461篇
  2002年   385篇
  2001年   338篇
  2000年   290篇
  1999年   239篇
  1998年   227篇
  1997年   250篇
  1996年   139篇
  1995年   148篇
  1994年   140篇
  1993年   91篇
  1992年   73篇
  1991年   67篇
  1990年   33篇
  1989年   26篇
  1988年   24篇
  1987年   13篇
  1986年   14篇
  1985年   11篇
  1984年   5篇
  1983年   7篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
991.
任国玉 《气象科学》1998,18(4):373-380
根据5个代表性台站的温度等级资料,得到了东北科尔沁地区1911-1988年区域平均的温度等级时间变化序列。这个地区冬季温度在年际、年代际和长期趋势上的变化与辽东半岛地区十分相似,但夏季温度的变化在各种时间尺度上同辽东半岛均存在较显著差异。本世纪科尔沁地区冬季温度和辽东半岛一样出现了明显增暖趋势,而夏季温度的变凉趋势却不如后者显著。  相似文献   
992.
大气重力信号的理论计算及其检测   总被引:22,自引:6,他引:16       下载免费PDF全文
基于标准大气定律和大气圆柱体分布模型,本文引进了大气重力格林函数,用离散格积方法求得了大气对重力场观测的影响,对台站高程、周围地形和地表温度变化等因素的影响问题进行了讨论.结果说明台站近区气压变化是大气重力信号的主要贡献者,考虑大气质量负荷引起的弹性地球形变效应后,对距台站0.5°的区域积分获得的大气重力导纳值为-0.3603μGal/hPa,占全球大气变化引起的总信号的90%以上,这一理论模型结果与超导重力仪实测结果相吻合,并能较有效地用于消除重力观测中的气压干扰成分.  相似文献   
993.
In this short paper we have identified some of the modelling groups that have the capability of simulating or carrying out short range numerical weather prediction over the monsoon belt. We have next outlined some of the important and desirable ingredients for a multilevel primitive equation model over the tropics, with most of the emphasis on the present version of Florida State University's Tropical Prediction Model. Finally, we present briefly some important results based on the present version of our prediction models that relate to the NWP efforts over the monsoon belt. Here we have identified the importance of mountains, convection, the radiative heating balance of the earth's surface, and the planetary boundary layer over the Arabian Sea.  相似文献   
994.
What have been the moral values and practices allowing equitable economic opportunities and a sense of fairness in North American small-scale fisheries? How have these “moral economies” been affected by neoliberal policies with their emphasis on efficiency, rational self-interest, and wealth accumulation? Focusing especially on the salmon and halibut fisheries in British Columbia, Canada, this discussion summarizes key findings on the manner in which small-scale fisheries and their moral practices tend to be marginalized and undervalued under neoliberal regimes. The paper considers the value of these moral economies for promoting social, economic, and ecological welfare as grounds for the expansion of small-scale fisheries.  相似文献   
995.
The paper presents an analysis of 17 long annual maximum series (AMS) of flood flows for Swiss Alpine basins, aimed at checking the presence of changes in the frequency regime of annual maxima. We apply Pettitt's change point test, the nonparametric sign test and Sen's test on trends. We also apply a parametric goodness‐of‐fit test for assessing the suitability of distributions estimated on the basis of annual maxima collected up to a certain year for describing the frequency regime of later observations. For a number of series the tests yield consistent indications for significant changes in the frequency regime of annual maxima and increasing trends in the intensity of annual maximum discharges. In most cases, these changes cannot be explained by anthropogenic causes only (e.g. streamflow regulation, construction of dams). Instead, we observe a statistically significant relationship between the year of change and the elevation of the catchment outlet. This evidence is consistent with the findings of recent studies that explain increasing discharges in alpine catchments with an increase in the temperature controlling the portion of mountain catchments above the freezing point. Finally, we analyse the differences in return periods (RPs) estimated for a given flood flow on the basis of recent and past observations. For a large number of the study AMS, we observe that, on average, the 100‐year flood for past observations corresponds to a RP of approximately 10 to 30 years on the basis of more recent observation. From a complementary perspective, we also notice that estimated RP‐year flood (i.e. flood quantile (FQ) associated with RP) increases on average by approximately 20% for the study area, irrespectively of the RP. Practical implications of the observed changes are illustrated and discussed in the paper. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
996.
The frequency and magnitude of extreme meteorological or hydrological events such as floods and droughts in China have been influenced by global climate change. The water problem due to increasing frequency and magnitude of extreme events in the humid areas has gained great attention in recent years. However, the main challenge in the evaluation of climate change impact on extreme events is that large uncertainty could exist. Therefore, this paper first aims to model possible impacts of climate change on regional extreme precipitation (indicated by 24‐h design rainfall depth) at seven rainfall gauge stations in the Qiantang River Basin, East China. The Long Ashton Research Station‐Weather Generator is adopted to downscale the global projections obtained from general circulation models (GCMs) to regional climate data at site scale. The weather generator is also checked for its performance through three approaches, namely Kolmogorov–Smirnov test, comparison of L‐moment statistics and 24‐h design rainfall depths. Future 24‐h design rainfall depths at seven stations are estimated using Pearson Type III distribution and L‐moment approach. Second, uncertainty caused by three GCMs under various greenhouse gas emission scenarios for the future periods 2020s (2011–2030), 2055s (2046–2065) and 2090s (2080–2099) is investigated. The final results show that 24‐h design rainfall depth increases in most stations under the three GCMs and emission scenarios. However, there are large uncertainties involved in the estimations of 24‐h design rainfall depths at seven stations because of GCM, emission scenario and other uncertainty sources. At Hangzhou Station, a relative change of ?16% to 113% can be observed in 100y design rainfall depths. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
997.
1 INTRODUCTIONTherecentandfuturedevelopmentofspacebasedremotesensingtechnologyhasbroughtareformationtoresearchworkaswellasformulatingsuitablepolicyforpopulation,resources,environmentanddevelopment.Throughrealtimeandperiodicobservationsofalargear…  相似文献   
998.
Water stored in soils, in part, controls vegetation productivity and the duration of growing seasons in wildland ecosystems. Soil water is the dynamic product of precipitation, evapotranspiration and soil properties, all of which vary across complex terrain making it challenging to decipher the specific controls that soil water has on growing season dynamics. We assess how soil water use by plants varies across elevations and aspects in the Dry Creek Experimental Watershed in southwest Idaho, USA, a mountainous, semiarid catchment that spans low elevation rain to high elevation snow regimes. We compare trends in soil water and soil temperature with corresponding trends in insolation, precipitation and vegetation productivity, and we observe trends in the timing, rate and duration of soil water extraction by plants across ranges in elevation and aspect. The initiation of growth-supporting conditions, indicated by soil warming, occurs 58 days earlier at lower, compared with higher, elevations. However, growth-supporting conditions also end earlier at lower elevations due to the onset of soil water depletion 29 days earlier than at higher elevations. A corresponding shift in peak NDVI timing occurs 61 days earlier at lower elevations. Differences in timing also occur with aspect, with most threshold timings varying by 14–30 days for paired north- and south-facing sites at similar elevations. While net primary productivity nearly doubles at higher elevations, the duration of the warm-wet period of active water use does not vary systematically with elevation. Instead, the greater ecosystem productivity is related to increased soil water storage capacity, which supports faster soil water use and growth rates near the summer solstice and peak insolation. Larger soil water storage does not appear to extend the duration of the growing season, but rather supports higher growing season intensity when wet-warm soil conditions align with high insolation. These observations highlight the influence of soil water storage capacity in dictating ecological function in these semiarid steppe climatic regimes.  相似文献   
999.
The summer weather characteristics of the Grove Mountain, East Antarctica, are presented based on the data obtained by Chinese National Antarctic Expedition (CHINARE) in January 1999. The result shows that the pattern of daily variation of temperature and the prevailing wind direction in Grove is similar to that of Zhongshan Station. However, the daily range of temperature and strong wind frequency are much higher than those of Zhongshan Station. The change of wind direction is close to the weather system that impacted the Grove Mountain. The warm and wet air from northern parts often causes the precipitation. The clear weather appears when controlled by eastern winds in January.  相似文献   
1000.
This paper measures the economic impact of climate on crops in Kenya. We use cross-sectional data on climate, hydrological, soil and household level data for a sample of 816 households. We estimate a seasonal Ricardian model to assess the impact of climate on net crop revenue per acre. The results show that climate affects crop productivity. There is a non-linear relationship between temperature and revenue on one hand and between precipitation and revenue on the other. Estimated marginal impacts suggest that global warming is harmful for crop productivity. Predictions from global circulation models confirm that global warming will have a substantial impact on net crop revenue in Kenya. The results also show that the temperature component of global warming is much more important than precipitation. Findings call for monitoring of climate change and dissemination of information to farmers to encourage adaptations to climate change. Improved management and conservation of available water resources, water harvesting and recycling of wastewater could generate water for irrigation purposes especially in the arid and semi-arid areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号